quarta-feira, 30 de setembro de 2009

O gato de Schrödinger

Booom no post de hoje vamos falar sobre uma experiência de uma cara maneirinho e supeeer de bem com a vida e que provavelmente levava uma vida comum como todos nós. (Y)
Vamos falar sobre a experiência Schrödinger (um nome simpático), e sobre a infelicidade que seu gato teve de possuir um dono como ele... bom, espero que gostem do post... e também entendam né galere?, porque entender o que ele quis com isso foi algo que eu não consegui até agora (brinks mario). Hohohoh =S


O gato de Schrödinger

Quando falamos sobre o "gato de Schrödinger" estamos nos referindo a um paradoxo que aparece a partir de um célebre experimento imaginário proposto por Erwin Schrödinger em 1937, para ilustrar as diferenças entre interação e medida no campo da mecânica quântica. O experimento mental consiste em imaginar um gato aprisionado dentro de uma caixa que contém um curioso e perigoso dispositivo. Esse dispositivo se constitui de uma ampola de frágil vidro (que contém um veneno muito volátil) e um martelo suspenso sobre essa ampola de forma que, ao cair, essa se rompe, liberando o gás venenoso com o qual o gato morrerá. O martelo esta conectado a um mecanismo detetor de partículas alfa, que funciona assim: se nesse sensor chegar uma partícula alfa que seja, ele é ativado, o martelo é liberado, a ampola se parte, o gás escapa e o gato morre; pelo contrário, se nenhuma partícula chegar, nada ocorrerá e o gato continuará vivo.


Quando todo o dispositivo estiver preparado, iniciamos o experimento. Ao lado do detetor colocamos um átomo radioativo que apresente a seguinte característica: ele tem 50% de probabilidade de emitir uma partícula alfa a cada hora. Evidentemente, ao cabo de uma hora só terá ocorrido um dos dois casos possíveis: o átomo emitiu uma partícula alfa ou não a emitiu (a probabilidade que ocorra um ou outro evento é a mesma). Como resultado da interação, no interior da caixa o gato estará vivo ou estará morto. Porém, isso não poderemos saber --- a menos que se abra a caixa para comprovar as hipóteses.

Se tentarmos descrever o que ocorreu no interior da caixa, servindo-nos das leis da mecânica quântica, chegaremos a uma conclusão muito estranha. O gato viria descrito por uma função de onda extremamente complexa resultado da superposição de dois estados, combinando 50% de "gato vivo" e 50% de "gato morto". Ou seja, aplicando-se o formalismo quântico, o gato estaria por sua vez 'vivo' e 'morto'; correspondente a dois estados indistinguíveis!

A única forma de averiguar o que 'realmente' aconteceu com o gato será realizar uma medida: abrir a caixa e olhar dentro. Em alguns casos encontraremos o gato vivo e em outros um gato morto.







Por que isso?

Ao realizar a medida, o observador interage com o sistema e o altera, rompendo a superposição dos dois estados, com o que o sistema decanta em um dos dois estados possíveis.
O senso comum nos predispõe que o gato não pode estar vivo e morto. Mas a mecânica quântica afirma que, se ninguém olhar o interior da caixa, o gato se encontrará numa superposição dos dois estados possíveis: vivo e morto.
Essa superposição de estados é uma conseqüência da natureza ondulatória da matéria, e sua aplicação à descrição mecânico-quântica dos sistemas físicos é que permite explicar o comportamento das partículas elementares e dos átomos. A aplicação disso aos sistemas macroscópicos como o gato ou, inclusive, se assim o preferir, a qualquer professor de física quântica, nos levaria ao paradoxo proposto por Schrödinger.
É isso ae, entenderam tudinho né?? (H) pois é, também não.. mais não desanimem, Richard Feymann, premio Nobel de Física, já dizia: "quem não ficar pasmado com a física quântica é porque não a compreendeu". Pasmem!
Ou seja, se o brother lá estiver certo manjo tudo de física quântica. (Y)

Ta bom chega de gracinha, então é isso, finalizamos esse post com essa explicação e essa linda foto desse gato simpático. =]


terça-feira, 15 de setembro de 2009

Física quântica (:


Falando de física quântica !Bom , Há pouco mais de cem anos, o físico Max Planck, considerado conservador, tentando compreender a energia irradiada pelo espectro da radiação térmica, expressa como Ondas eletromagneticas produzidas por qualquer organismo emissor de calor, a uma temperatura x, chegou, depois de muitas experiências e cálculos, à revolucionária ‘constante de Planck’, que subverteu os princípios da física clássica.
Este foi o início da trajetória da Física ou Mecânica Quântica, que estuda os eventos que transcorrem nas camadas atômicas e sub-atômicas, ou seja, entre as moléculas, átomos, elétrons, prótons, pósitrons, e outras partículas. Planck criou uma fórmula que se interpunha justamente entre a Lei de Wien – para baixas freqüências – e a Lei de Rayleight – para altas freqüências -, ao contrário das experiências tentadas até então por outros estudiosos.
Albert Einsten, criador da Teoria da Relatividade, foi o primeiro a utilizar a expressão quantum para a constante de Planck E = hv, em uma pesquisa publicada em março de 1905 sobre as conseqüências dos fenômenos fotoelétricos, quando desenvolveu o conceito de fóton. Este termo se relaciona a um evento físico muito comum, a quantização – um elétron passa de uma energia mínima para o nível posterior, se for aquecido, mas jamais passará por estágios intermediários, proibidos para ele, neste caso a energia está quantizada, a partícula realizou um salto energético de um valor para outro. Este conceito é fundamental para se compreender a importância da física quântica.
A Física Quântica envolve conceitos como os de partícula – objeto com uma mínima dimensão de massa, que compõe corpos maiores – e onda – a radiaçao eletromagnetica, invisível para nós, não necessita de um ambiente material para se propagar, e sim do espaço vazio. Enquanto as partículas tinham seu movimento analisado pela mecânica de Newton, as radiações das ondas eletromagnéticas eram descritas pelas equações de Maxwellleis da mecânica quântica descrevem como vetores de estado e funções de onda evoluem no tempo.
Estes objetos matemáticos abstratos (kets e funções de onda) permitem o cálculo da probabilidade de se obter resultados específicos em um experimento concreto. Por exemplo, o formalismo da mecânica quântica permite que se calcule a probabilidade de encontrar um elétron em uma região particular em torno do núcleo.

É pessoal apesar de muitas pessoas não terem conhecimento sobre física quântica temos ela em nosso dia a dia ,o consumo de muitos de seus resultados concretos, como o aparelho de CD, o controle remoto, os equipamentos hospitalares de ressonância magnética, até mesmo o nosso famoso computador *-*. ;)